GETTING THE MESSAGE ACROSS
“DDR communication through AXI-IPs”

Prakhar Sharma
Green-IC group, NUS
http://sharmaprakhar.github.io/

OVERVIEW

Zyng-7000 Architecture (PS, PL, DDR and ports)

Xilinx toolchain for embedded development (Vivado, SDK, XMD)
What is DDR and what is all the fuss about?

Talking to the DDR — the DMA approach

Talking to the DDR —the AXI memory mapped approach

Talking to the DDR — the MIG approach

The hidden IP — AXI burst IPIF

Language and customs of the AXI world (AXI burst perspective)
Simulating your design

Hardware simulation on board

Zynqg-7000 Architecture (PS, PL, DDR and ports)

MUX

cessing System

4

%

—{ 2xsPl_je—
P—

2x |12C

 —

2x UART

GPIO

2x SDIO
with DMA

1

2xUSB |
with DMA

[]]

2x GigE
with DMA

b

Static Memory Controller
Quad-SPI, NAND, NOR

Dynamic Memory Controller
DDR3, DDR2, LPDDR2

1

AMBA Switches

NEON™/ FPU Engine

ARM® CoreSight™ Muiti-core & Trace Debug

Cortex™-A9 MPCore™
@ 32/32 KB IID Caches

Timer Counters

512KB L2 Cache Snoop Control Unit (SCU)

General Interrupt Controfler DMA Configuration

1 |

AMBA Switches

NEON™/ FPU Engine

Cortex™-A9 MPCore™
32/32 KB I/ID Caches

256 KB On-Chip Memory

} B

[1

AMBA?® Switches

I

Interrupt

Programmable

Logic:
System Gates,
DSP, RAM

S_AXI HPO
AXI Interconnect]

DMA Engine | |

Concatenation

| M_AXI GPO i | SATA Engine E
— :

Multi Gigabit Transceivers

}

Zyng-7000 Architecture (PS, PL, DDR and ports)

'DMA Controller |
__(ARM PL330)

|

Connect :
(ARM

NIC-301)

I
I
i
I
i
B
I

’

Xilinx toolchain for embedded development (Vivado, SDK, XMD)
PL .

PS

- SGPO
| SGP1 |
Bl

AXI
Slaves

GPIO....
: DMA Controller
1 __(ARM PL330)

NIC-301)

\----
A

AXI Master

Vivado, custom IP integrator, IP packager

SDK, XMD

Program ARM core
Debug ARM core

Xilinx toolchain for embedded development (Vivado, SDK, XMD)

Vivado, custom IP
integrator, IP packager | P pwem. ..),

NIC-301)

\----
A

ARM core ports — master
Used to Read/Write to the PL
Data transfer happens through the SDK (C code)

SDK, XMD

Program ARM core
Debug ARM core

Xilinx toolchain for embedded development (Vivado, SDK, XMD)

Vivado, custom IP
integrator, IP packager

SDK, XMD
* Program ARM core
* Debug ARM core

* High performance ports on the PL-PS boundary

* ARM core ports — master Used for data acquisition from the DDR (Read/Write)
* Used to Read/Write to the PL

* Data transfer happens through the SDK (C code)

What is DDR

e Basically a DRAM array

* Volatile storage — so data is lost when not powered on

* Data width and data address — two most important parameters

» All other parameters are a property of the data communication protocol

* In the case of Zyng 7000 — AXI4 is the protocol

* Read and Write have different protocol handshaking signals

* Every horizontal location is a physical address in hexadecimal representation e.g. 0x0400_0000
* Transfer data on both rising and falling clock edges

» Higher transfer rates as opposed to SDRAMs DRAM Array
* Tighter clocking constraints (more in an bitd bit1 bit2 bit3 bitd bit509 bit510 bit511
Advanced memory technology class) wordd —+—T+—T 1T T T[T
B n B B N . R . BT
T T T T i N T i il 1
—— [| [[T 1 1 1
Y o Y Y Y. Sy Y Ty
) T T T T T T i M
i M ¥ | I [5 s o [B o e e
I T T T 1R T e I
o AR I s 5 e [B [1 L L
LY LY 2% £ 1 L= L% 87 L]
T T T T il i T i [T
word255 71 1 71 , l ;] [, [, l ,
T4 4 % £ £80 £ £ A
T T T T ¥ 5 T ¥ b T

TALKING TO THE DDR — Central DMA

DMA is programmed through SDK in C or C++

Standard functions available in the xaxidma_hw.h header file available from Xilinx

Refer to AXI DMA documentation chapter “Designing with the core” for all the details needed to design with
the core. Look for heading “programming sequence”

Simple DMA mode — Scatter gather mode

DMA is programmed by writing values to physical registers

Especially useful to write the AXI Stream data to the DDR — S2MM and MM2S

Low control over timing and read/write sequence
Hardware acceleration affected when the processor is engaged for every transfer

What if we could offload the processing task of reading and writing to physical addresses to the co-processor??

TALKING TO THE DDR — FMM/MML/STREAM

AXI stream interface
(No addresses)
Especially good for image processing, DSP

TALKING TO THE DDR — FMM/MML

Read Dat>a Read
Transaction

Bead Address

AXI
Master

Write Address

_ Write
Write Data Transaction

Write Respc;nse

Lite does not support burst transfers but low complexity
Full MM has a complex setup of signals — tough to write from scratch
Refer to the Xilinx documentation for MM full/lite for the complete list of signals

TALKING TO THE DDR — MIG

Memory Interface Generator directly lets the PL talk to the DDR through a design realized on the PL
Does not need the HP ports

Possible only on the ZC-706 board as zedboard does not have a PL side DDR memory bank

IP customizable in the IP catalog in vivado

Beyond our scope (read | have little idea about this IP)

If you figure MIG out please let me know!!

TALKING TO THE DDR — AXI burst IPIF

Supports data burst (duh!)

Smaller set of well defined signals (but still pretty complicated)

Has no gui — hidden IP provided with the Xilinx IP catalog

Implemented as raw VHDL files (Bad news Verilog designers)

Needs a stable reset signal from the ARM processor to initialize

User IP has to be “interwoven” with the VHDL files — needs considerable RTL coding experience

A lot of signals to debug on the ILA core (no JTAG debugging now, we are talking hardware — need actual hardware
probes e.g. chipscope)

Lightning fast — hardware is always faster on logic than software (sort of the whole point of making co-processors)
Tractable set of signals

Easy to understand

Has extensive documentation © (always capitalize on resources)

TALKING TO THE DDR — AXI burst IPIF

= User IP
AXI Master Burst Design
m_axi_aclk ———
- IPIC
m_axi_aresetn —|———#
IPIC Command < Rd/Wr Req & Qualifiers
and Status | . |
Adapter Status Reply >
= = =
: 3
El 2] |B] |2
2| 18] |2] |2
H = 5 5
w0
2 /!
o AXI4 Master Read Address Channel
< \ I _'\ AXI Master
5¢ Stream to i
% | AXi4 Master Read Data Channel (32, 62, Locallink | T odbata (32, 64, 120-bits)
or 128 bits) ‘\/ R
< AXl4 Master Write Address Channel Read and
Write —
;1 ocalLin
AXl4 Master Write Data Ch 1 (32, 64, Controller to AXI /
aster Wri al anne , 64, - i
or 128 bits) Slave Write Data (32, 64, 128-bits)
\J— Stream \
I Adapter
AXl4 Master Write Response Channel

~_

Figure 1: AXI Master Burst Block Diagram

http://japan.xilinx.com/support/documentation/ip_documentation/axi_master_burst/v2_0/pgl62-axi-master-burst.pdf

TALKING TO THE DDR — AXI burst IPIF

Control IP2BUS signals here

IP2BUS signals

T

USER IP

AXI Burst IPIF “ o ﬁ DDR Memory
ports

BUS2IP signals

BUS2IP signals dictate how to control IPIF picks data from the memory
IP2BUS signals and gets data to the memory

http://japan.xilinx.com/support/documentation/ip_documentation/axi_master_burst/v2_0/pgl62-axi-master-burst.pdf

SIMULATING YOUR DESIGN

Requirement

* Debugging on the hardware should be to fine tune the design

* Pre bitstream design simulation is necessary for complex Ips

* |LA cores have limited memory to store and display probe data and waveforms

Problems

* AXI world BFM not available for cheap

e 7Zyng BFM simulation models available from Xilinx and Cadence — not cheap

* Extensive simulation setup required for user IP simulation with AXI world and Zyng

* Generally an RTL design team needed to carry out a full fledged emulation task for complex Ips

Need for simple simulation models that could behave like how IPIF behaves and replicates the signal sequence
Could verify simple IPs for glaring faults
Assume that Zyng and AXI4 world IPs are verified and tested by Xilinx

Note: clock cycle latency might be different than what you actually see on the board

https://github.com/sharmaprakhar/zynq_ddr_design_ex

