
A Model-Free Approach to Meta-Level Control of Anytime Planning

Justin Svegliato1, Prakhar Sharma1, and Shlomo Zilberstein1

Abstract— Anytime algorithms offer a trade-off between so-
lution quality and computation time that has proven to be useful
in autonomous systems for a wide range of real-time planning
problems. In order to optimize this trade-off, an autonomous
system has to solve a challenging meta-level control problem: it
must decide when to interrupt the anytime algorithm and act
on the current solution. Current meta-level control techniques,
however, make a number of unrealistic assumptions that reduce
their effectiveness and usefulness in the real world. Eliminating
these assumptions, we first introduce a model-free approach to
meta-level control based on reinforcement learning and prove its
optimality. We then offer a general meta-level control technique
that can use different reinforcement learning methods. Finally,
we show that our approach is effective across several common
benchmark domains and a mobile robot domain.

I. INTRODUCTION

Autonomous systems use anytime algorithms in many
real-time planning problems, including motion planning [1],
heuristic search [2], [3], object detection [4], belief space
planning [5], [6], and probabilistic inference [7]. The central
property of an anytime algorithm is that it can be interrupted
at any time to provide a solution that is gradually improved
upon during execution. This offers a trade-off between so-
lution quality and computation time that has proven to be
useful in autonomous systems that need to produce effective
action in a timely manner. However, in order to optimize this
trade-off, an autonomous system has to solve a challenging
meta-level control problem: it must decide when to interrupt
the anytime algorithm and act on the current solution.

There have been two main approaches to meta-level con-
trol for anytime algorithms in autonomous systems. The
earliest approach that was proposed executes the anytime
algorithm until its stopping point determined prior to runtime
is reached [8], [9]. Because the stopping point is not adjusted
once the anytime algorithm starts, this approach is called
fixed allocation. While fixed allocation can be effective when
there is little uncertainty in the performance of the anytime
algorithm or the urgency for the solution, there is often
substantial uncertainty in either or both variables in real-time
planning problems [10]. In response, a more sophisticated
approach that was proposed tracks the performance of the
anytime algorithm and estimates its stopping point at runtime
periodically [11], [12], [13], [14]. Since the stopping point
is adjusted as the anytime algorithm runs, this approach is
called monitoring and control. In general, monitoring and
control has continually been shown to be a more effective
approach to meta-level control than fixed allocation.

1College of Information and Computer Sciences, University of
Massachusetts, Amherst, MA, USA. Emails: {jsvegliato,
prakharsharm, shlomo}@cs.umass.edu

start

goal

Episodes

Time-Dependent	Utility Optimal	Utility

Current	Utility
1000 1500 2000

Episode	1000
Episode	1500
Episode	2000
Convergence

Paths

Fig. 1. An autonomous system can use a model-free approach to meta-
level control based on reinforcement learning to learn when to interrupt a
path planning algorithm and act on the current path plan. As the number of
episodes increases, the utility of the current path plan approaches the utility
of the final path plan that optimizes the trade-off between solution quality
and computation time. Note that the path plan at convergence requires
minutes while the final path plan only involves seconds of deliberation.

Current meta-level control techniques that monitor and
control anytime algorithms have traditionally relied on plan-
ning with a model, called a performance profile, that de-
scribes the performance of the anytime algorithm solving a
specific problem on a particular system. This model must be
compiled offline before the activation of meta-level control
by using the anytime algorithm to solve thousands of in-
stances of the problem on the system. Planning with a model,
however, imposes many assumptions that are often violated
by autonomous systems that operate in real environments:
• There must be enough time for offline compilation of

the performance profile of the anytime algorithm.
• The settings of the anytime algorithm across every

problem instance must be the same.
• The distribution of problem instances solved by the

anytime algorithm must be known and fixed.
• The CPU and memory conditions of the system that

executes the anytime algorithm must be static.
Current techniques therefore make many assumptions that
reduce their effectiveness and usefulness in the real world.

We propose a novel form of metareasoning illustrated
in Fig. 1 that eliminates these unrealistic assumptions by:
(1) introducing a model-free approach to meta-level control
based on reinforcement learning and proving its optimality,
(2) offering a general meta-level control technique that can
use different reinforcement learning methods, and (3) show-
ing that our approach is effective across several common
benchmark domains and a mobile robot domain.



Fig. 2. An idealized example of the meta-level control problem

II. META-LEVEL CONTROL PROBLEM

We begin by reviewing the meta-level control problem
for anytime algorithms. This problem requires a model that
describes the utility of a solution computed by an anytime
algorithm. Naturally, in real-time planning problems, a so-
lution of a specific quality calculated in a minute has lower
utility than a solution of the same quality calculated in a
second. At the minimum, this implies that the utility of a
solution is likely a function of not only its quality but also its
computation time [15], [9]. Following this line of intuition,
we define the utility of a solution below.

Definition 1. A time-dependent utility function, U : Φ ×
Ψ→ R, represents the utility of a solution of quality q ∈ Φ
at time step t ∈ Ψ.

A time-dependent utility function can often be simplified
by expressing it as the difference between two functions
typically referred to as object-level utility and inference-
level utility [16]. Object-level utility represents the utility
of a solution by considering its quality but disregarding its
computation time while inference-level utility represents the
utility of a solution by taking into account its computation
time but ignoring its quality. Adopting more recent terminol-
ogy [17], we define such a property as follows [13].

Definition 2. A time-dependent utility function, U : Φ×Ψ→
R, is time-separable if the utility of a solution of quality
q ∈ Φ at time step t ∈ Ψ can be expressed as the difference
between two functions, U(q, t) = UI(q)−UC(t), where UI :
Φ→ R+ is the intrinsic value function and UC : Ψ→ R+

is the cost of time.

Given a time-dependent utility function, the meta-level
control problem is the problem in which an autonomous
system must decide when to interrupt an anytime algorithm
and act on the current solution. Fig. 2 provides an illustration
of the meta-level control problem [18]. In this illustration,
the algorithm should ideally be interrupted at the optimal
stopping point because this is the maximum point of the
time-dependent utility function. In practice, however, the
optimal stopping point can rarely be determined as a result
of considerable uncertainty about the performance of the
algorithm or the urgency for the solution. The optimal
stopping condition must therefore be approximated using an
approach that models either or both variables. Note that we
assume there is only uncertainty about the performance of
the algorithm similar to earlier work [13].

Fig. 3. An idealized illustration of model-free meta-level control

III. MODEL-FREE META-LEVEL CONTROL

We now introduce a model-free approach to meta-level
control based on reinforcement learning. Reinforcement
learning has led to many methods [19] that have been
effective across a wide range of applications from game
playing [20] to helicopter control [21]. So as to maximize a
notion of cumulative reward, a reinforcement learning agent
learns how to operate in an environment incrementally online
through reward signals in the form a policy. This is essential
to meta-level control for two reasons. First, because there
is often not enough time before the activation of meta-level
control, the policy must be compiled online. Second, since
the parameters of meta-level control often change over time,
the policy must be updated incrementally. Reinforcement
learning is therefore a natural approach to meta-level control.

Fig. 3 illustrates how a meta-level control technique that
uses a reinforcement learning method learns its policy for
a problem with parameters that change over time. Suppose
the technique compiles its policy for the problem online (the
green section of the first problem). When the parameters of
the problem change (the problem transition), the policy of
the technique may degrade in performance. In response, the
technique updates its policy for the problem incrementally
(the red section of the second problem). Generally, if there
is not enough time before the activation of meta-level control
or the parameters of meta-level control change over time, the
technique can learn its policy on the fly from scratch.

Although we are not aware of any model-free approach to
meta-level control based on reinforcement learning, such a
framework is an especially good fit for several reasons. First,
although the transition dynamics given the performance of an
anytime algorithm may be unknown, reinforcement learning
can learn an effective policy by balancing exploitation with
exploration. Next, reinforcement learning can reduce the
overhead of learning an effective policy by learning a partial
policy that covers only reachable regions of the state space
instead of a universal policy that covers the entire state space.
This is because large regions of the state space are unlikely
to be reached and can be ignored in practice. Finally, while
the transition dynamics given the performance of an anytime
algorithm may be nonstationary, reinforcement learning can
maintain an effective policy by making adjustments with
negligible overhead. In short, meta-level control shares a
number of properties with problems for which reinforcement
learning has been shown to be effective already.

Our model-free approach to meta-level control based



on reinforcement learning expresses the meta-level control
problem as a Markov decision process (MDP). An MDP
is a formal decision-making model for reasoning in fully
observable, stochastic environments that can be defined by
a tuple 〈S,A, T,R, s0〉, where S is a finite set of states,
A is a finite set of actions, T : S × A × S → [0, 1]
represents the probability of reaching state s′ ∈ S after
performing a ∈ A in state s ∈ S, and R : S × A × S → R
represents the expected immediate reward of reaching state
s′ ∈ S after performing action a ∈ A in state s ∈ S, and
s0 ∈ S is an optional start state. A solution to an MDP is
a policy π : S → A that indicates that action π(s) ∈ A
should be performed in state s ∈ S. A policy π induces the
value function V π : S → R that represents the expected
cumulative reward V π(s) of each state s ∈ S. An optimal
policy π∗ maximizes the expected cumulative reward. There
is no discount factor because the meta-level control problem
has an indefinite horizon given that the anytime algorithm is
always either interrupted or terminated naturally [22].

We now provide a formal description of the meta-level
control problem by extending an MDP below.

Definition 3. The meta-level control problem can be repre-
sented by a tuple 〈Φ,Ψ, S,A, T,R, s0〉, where
• Φ is a set of qualities,
• Ψ is a set of time steps,
• S = Φ × Ψ is a set of states of computation: each

state s ∈ S indicates that the anytime algorithm has a
solution of quality q ∈ Φ at time step t ∈ Ψ,

• A = {STOP,CONTINUE} is a set of actions such that
STOP interrupts the anytime algorithm and CONTINUE
executes the anytime algorithm for a time step,

• T : S×A×S → [0, 1] is an unknown transition function
that describes the performance of the anytime algorithm
solving an instance of a problem on a system,

• R : S × A × S → R is a reward function called the
reward of anytime computation, and

• s0 ∈ S is an optional start state that is typically (0, 0).

Note that any state s ∈ S representing a solution of quality
q ∈ Φ at time step t ∈ Ψ can be denoted by a tuple (q, t).

Given that the transition function is unknown, the meta-
level control problem has a reward function that describes the
reward generated by using the anytime algorithm. This can
be represented as a piecewise function of two components.
If the action was to execute the anytime algorithm for a
time step, the reward is the difference between the utility of
the current solution and the utility of the previous solution.
However, if the action was to interrupt the anytime algorithm,
the reward is nil. We define the reward function as follows.

Definition 4. Given a state s = (q, t) ∈ S, an action a ∈
A, and a successor state s′ = (q′, t′) ∈ S, the reward of
anytime computation can be represented by a function

R(s, a, s) =

{
U(q′, t′)− U(q, t), if a = CONTINUE,

0, otherwise,

where U : Φ×Ψ→ R is a time-dependent utility function.

Algorithm 1: A general meta-level control technique that
can use different reinforcement learning methods

Input: An anytime algorithm Λ, an action-value function Q,
an update rule ρ, an exploration strategy ξ, and a
duration ∆t

Output: A solution σ

1 s = (q, t)← s0

2 a← πQξ (s)

3 Λ.Start()
4 Sleep(∆t)

5 while Λ.Running() do
6 σ ← Λ.CurrentSolution()

7 s′ = (q′, t′)← (σ.Quality(), t+ ∆t)

8 r ← R(s, a, s′)

9 ρ(Q, r, α)

10 a← πQξ (s′)

11 if a = STOP then
12 Λ.Stop()
13 return σ

14 s← s′

15 Sleep(∆t)

16 return σ

It is easy to verify that the reward of anytime computation is
consistent with the objective of optimizing time-dependent
utility. Running the anytime algorithm until a solution of
quality q ∈ Φ at time step t ∈ Ψ results in a cumulative
reward equal to the time-dependent utility U(q, t).

An important goal of the meta-level control problem is
to have an optimal policy that results in optimal meta-level
control of the anytime algorithm given certain assumptions.

Theorem 1. If the change in the quality of the solution over
time is Markovian given its current quality q ∈ Φ and time
step t ∈ Ψ, the optimal policy π∗ : S → A of the meta-level
control problem interrupts the anytime algorithm optimally.

Proof (Sketch) 1. This follows from the Markov assumption:
the transition dynamics over the successor states of compu-
tation only depend on the current state of computation.

Note that the optimal policy can be calculated or approxi-
mated using either planning or reinforcement learning.

Although many approaches to meta-level control have
traditionally represented the state of computation as the
quality and time step of a solution, such a representation
may not be sufficient since the change in the quality of the
solution given its current quality and time step may not be
Markovian. This representation could therefore benefit from
additional features that describe the state of computation. In
particular, it could include algorithm-specific features, such
as the size of the open list of Anytime A* [23], problem-
specific features, such as the cluster distance of a TSP [24],
or features specific to the underlying system. While our
model-free approach has near optimal performance and fast
convergence empirically, it can naturally augment the state
of computation by using reinforcement learning.



IV. META-LEVEL CONTROL TECHNIQUE

In this section, we offer a general meta-level control
technique that can use different reinforcement learning meth-
ods. Similar to earlier work, our technique is a form of
monitoring and control that tracks the performance of the
anytime algorithm and estimates its stopping point at runtime
periodically [11], [12], [13], [14]. However, while existing
techniques rely on planning with a performance profile that
must be compiled offline before the activation of meta-
level control, our technique uses reinforcement learning to
learn the policy incrementally online instead: it builds its
policy gradually using the reward of anytime computation
each time the anytime algorithm updates its solution to
the instance of the problem. Therefore, by replacing offline
compilation with online learning, our technique eliminates
the unrealistic assumptions of existing techniques that reduce
their effectiveness and usefulness in the real world.

Algorithm 1 outlines the general form of our technique.
First, the state is initialized using the initial quality and time
step, the action is initialized using the policy induced by the
initial action-value function and the exploration strategy, and
the anytime algorithm is started for a fixed duration. Next, the
performance of the anytime algorithm is monitored at fixed
intervals. During each monitoring step, the current solution
is first retrieved from the anytime algorithm. The successor
state is then built using the new quality and time step. The
reward of anytime computation is subsequently calculated
using the state, the action, and the successor state. The
action-value function is in turn updated using the update rule
based on the reward of anytime computation and the learning
rate. An action is once again selected from the policy induced
by the updated action-value function and the exploration
strategy. Finally, if the action indicates to stop, the anytime
algorithm is interrupted and the current solution is returned.
Otherwise, the state is set to the successor state and the
anytime algorithm continues to run for a fixed duration. The
anytime algorithm is monitored at fixed intervals until it
is interrupted or terminated naturally. Note that the action-
value function easily can be represented by a table [19] or
approximated by a linear [25] or nonlinear function [26].

Our technique has been generalized to support many
reinforcement learning methods. In particular, it can use
on-policy and off-policy temporal difference (TD) learning
methods like TD(λ) and SARSA(λ) [27], [28] in addition
to exploration strategies like ε-greedy and softmax action
selection [19]. Although we do not commit to a specific
reinforcement learning method, we describe our technique
using ε-greedy Q-learning [29] as an example because it has
been analyzed extensively and shown to be effective across
many applications [30], [31], [32]. We discuss the update
rules and the exploration strategies of our technique below.

A. Update Rules

Any reinforcement learning agent updates its action-value
function by following an update rule that uses a reward signal
emitted by the environment. In Algorithm 1, when a new
solution is computed in each monitoring step, our technique

updates the action-value function using the update rule based
on the reward of anytime computation and the learning rate.
When the anytime algorithm is interrupted, however, our
technique does not update the action-value function because
there is no change in the solution.
ε-greedy Q-learning Example: Given an action-value

function Q, a reward of anytime computation r = R(s, a, s′),
and a learning rate α, the update rule ρ(Q, r, α) is below:

Q(s, a)
+← α[r + max

a′∈A
Q(s′, a′)−Q(s, a)],

where the current state is s = (q, t) ∈ S, the current action
is a ∈ A, and the successor state is s′ = (q′, t′) ∈ S.

B. Exploration Strategies

Any reinforcement learning agent balances exploitation
with exploration by following an exploration strategy. In
Algorithm 1, when the action-value function is updated in
each monitoring step, our technique updates the policy using
the action-value function and the exploration strategy.
ε-greedy Q-learning Example: The greedy policy must

first be calculated. This policy can be built by performing a
one-step lookahead over every action available at the current
state. Given an action-value function Q, the greedy policy
πQ(s) is calculated below:

πQ(s)← arg max
a∈A

Q(s, a),

where the current state is s = (q, t) ∈ S. Finally, once
the greedy policy has been calculated, it can be modified
to follow ε-greedy exploration by introducing randomness.
Given an exploration probability ε and a greedy policy πQ,
the ε-greedy policy πQξ (s) is calculated below:

πQξ (s) =

{
πQ(s), with probability 1 - ε,
random(A), otherwise,

where the current state is s = (q, t) ∈ S.

V. EXPERIMENTS

We compare our model-free approach to meta-level control
based on reinforcement learning to the prevailing general-
purpose planning technique that can be used with any any-
time algorithm [13]. Each version of our technique uses a
different reinforcement learning method with some function
representation following ε-greedy action selection. In partic-
ular, we evaluate the following versions of our technique:
tabular SARSA, tabular Q-learning, Fourier basis SARSA,
and Fourier basis Q-learning. Note that a tabular function
and a linear approximation with Fourier basis are often the
first to be tried by reinforcement learning methods [25].

All meta-level control techniques have been evaluated on
several common benchmark domains and a mobile robot
domain. In each domain, an autonomous system solves the
meta-level control problem for a given anytime algorithm on
a specific problem. To do this, each trial runs two processes
in parallel. The object-level process solves an instance of
the problem with the anytime algorithm while the meta-level



TABLE I
THE LIN-KERNIGHAN HEURISTIC DOMAIN RESULTS

Method 40-TSP (%) 50-TSP (%) 60-TSP (%) 70-TSP (%) 80-TSP (%) 90-TSP (%)

Planning 9.67± 0.63 11.40± 0.79 15.27± 1.90 8.95± 0.64 10.68± 0.80 11.96± 0.85

SARSA(Table) 11.11± 2.76 13.94± 2.31 16.73± 0.91 13.61± 1.74 24.49± 1.36 21.46± 0.91
Q-learning(Table) 8.62± 2.42 15.66± 1.88 18.61± 1.13 20.93± 1.99 23.34± 1.62 26.44± 0.89

SARSA(Fourier) 3.84± 1.22 2.27± 0.34 6.77± 1.14 3.75± 0.94 3.81± 0.44 5.68± 0.53
Q-learning(Fourier) 2.93± 0.91 2.69± 0.37 6.33± 1.36 2.51± 0.69 5.64± 0.69 5.25± 0.41

TABLE II
THE GENETIC ALGORITHMS DOMAIN RESULTS

Method 20-JSP (%) 40-JSP (%) 60-JSP (%)

Planning 2.85± 0.47 5.54± 0.56 2.52± 0.52

SARSA(Table) 18.26± 0.42 17.23± 0.37 15.33± 0.31
Q-learning(Table) 18.17± 0.33 16.96± 0.37 14.43± 0.28

SARSA(Fourier) 2.11± 0.32 2.37± 0.55 1.38± 0.34
Q-learning(Fourier) 2.77± 0.36 1.88± 0.27 2.22± 0.55

process monitors and controls the anytime algorithm with
the meta-level control technique. The trial is over once the
anytime algorithm is interrupted or terminated naturally.

Any meta-level control problem requires a time-dependent
utility function. Following earlier work, given a solution of
quality q ∈ Φ at time step t ∈ Ψ, the time-dependent utility
can be defined as the function U(q, t) = αq−eβt, where the
rates α and β are based on the value of a solution and the
urgency for a solution [13]. These rates have been selected
deliberately to avoid trivializing the problem by making the
urgency for a solution so low that the anytime algorithm runs
to completion or so high that it is interrupted immediately.

All of our meta-level control techniques begin with a
randomized initial policy that is equally likely to stop or
continue the anytime algorithm. This policy is updated as
the technique learns from 5000 random problem instances.
The exploration probability ε is set to 0.1 with a decay of
0.999 while the learning rate α is set to 0.1 for our tabular
techniques and 0.00001 for our Fourier basis techniques. It is
also possible to design the initial policy intelligently depend-
ing on its function representation by exploiting the form of
the time-dependent utility function. The planning technique,
however, uses a static policy that takes substantially longer
to calculate since it applies dynamic programming to a
performance profile compiled from 2000 random problem
instances that are solved to completion. It therefore would
have been infeasible to use 5000 random problem instances.

A. Common Benchmark Domains

We begin by evaluating our meta-level control approach on
several common benchmark domains. Ideally, the quality of a
solution can be defined as the approximation ratio, q = c∗/c,
where c∗ is the cost of the optimal solution and c is the
cost of the current solution. However, because the cost of
the optimal solution cannot quickly be computed for any
benchmark problem, we estimate the quality of a solution
as the approximation ratio, q = `/c, where ` is a problem-
dependent lower bound on the optimal solution.

All of our meta-level control technique are evaluated

TABLE III
THE SIMULATED ANNEALING DOMAIN RESULTS

Method 100-QAP (%) 150-QAP (%) 200-QAP (%)

Planning 4.33± 0.27 6.52± 0.24 7.13± 0.19

SARSA(Table) 4.13± 0.91 3.97± 0.13 4.39± 0.17
Q-learning(Table) 3.36± 0.94 3.95± 0.27 3.52± 0.53

SARSA(Fourier) 0.69± 0.15 0.51± 0.11 1.12± 0.11
Q-learning(Fourier) 0.36± 0.21 0.53± 0.21 1.17± 0.43

along three dimensions: the degree of optimality, the rate of
convergence, and the rate of adaptation. First, for optimality,
Tables I, II, and III show the average time-dependent utility
loss of the final solution for each of our techniques across
100 instances of all benchmark problems. Next, for conver-
gence, Fig. 4 shows the change in the time-dependent utility
of the policy for each of our techniques on select benchmark
problems. Finally, for adaptation, Fig. 5 shows the number
of episodes required by each of our techniques to adapt to a
change in the parameters of select benchmark problems.

1) Lin-Kernighan Heuristic Domain: The first domain
uses the Lin-Kernighan heuristic to solve travelling salesman
problems (TSP). A TSP has a set of cities that must be
visited using the shortest possible route where a distance
is given for each pair of cities. The Lin-Kernighan heuristic
is a tour improvement algorithm that starts with an initial
tour and gradually improves that tour by swapping specific
subtours until convergence [33]. Solution (tour) quality is
approximated using the length of the minimum spanning tree
of the TSP as the lower bound `tsp.

2) Genetic Algorithms Domain: The next domain uses
a genetic algorithm to solve job-shop problems (JSP). A
JSP has a set of jobs composed of a sequence of tasks
that must be scheduled on a set of machines. The genetic
algorithm is a standard open-source Python implementation
based on swap mutation and generalized order crossover
used to solve JSPs approximately [34]. Solution (schedule)
quality is approximated using the time required to complete
the longest job as the lower bound `jsp.

3) Simulated Annealing Domain: The final domain uses
simulated annealing to solve quadratic assignment prob-
lems (QAP). A QAP has a set of facilities that must be
assigned to a set of locations where a distance is given
for each pair of locations and a flow is given for each
pair of facilities. The simulating annealing algorithm is a
standard open-source Fortran implementation used to solve
QAPs approximately [35]. Solution (assignment) quality is
approximated using the Gilmore-Lawler bound, the optimal
cost of a linearized QAP [36], as the lower bound `qap.



Fig. 4. The learning curves for each of our meta-level control techniques on the 60-TSP, 40-JSP, and 150-QAP benchmark problems

Fig. 5. The adaptation period for our Fourier basis meta-level control
techniques on every TSP benchmark problem

B. Mobile Robot Domain

We now evaluate our meta-level control approach on a
mobile robot domain. On an iClebo Kobuki in simulation,
we use a path planning algorithm that computes path plans
that minimize the probability of collision gradually from
an open-source robotics C++ framework called epic [37].
Solution (path plan) quality is defined as safety in terms of
the probability of collision. The mobile robot must therefore
trade computation time with safety. Note that Fig. 1 is an
illustration of the mobile robot domain in simulation.

All of our meta-level control techniques are evaluated
on their degree of optimality. Table IV shows the average
time-dependent utility loss of the final solution for each of
our techniques across 100 instances of three path planning
problems. Each problem uses a different map. The OFFICE
map is a room in which the goal is impeded by furniture.
The MINE-S and MINE-L maps are coal mines generated
by a standard mapping procedure [38]. All instances of each
problem have a random start but the same goal position.

VI. DISCUSSION

Our model-free approach to meta-level control based on
reinforcement learning outperforms the planning technique
on every domain. Given near optimal performance in Ta-
bles I, II, III, and IV and fast convergence in Fig. 4, we
focus on our techniques that use a linear approximation
with Fourier basis. Our techniques incur a loss lower than
3% on most problems with an upper limit of 7% while
the planning technique incurs a loss higher than 10% on
most problems with an upper limit of 16%. Our techniques
also have less variance compared to the planning technique.
Overall, while our approach can be improved in many ways,
it is encouraging that it has near optimal performance and fast
convergence using standard reinforcement learning methods,
simple function representations, and naive action selection.

TABLE IV
THE MOBILE ROBOT DOMAIN RESULTS

Method OFFICE (%) MINE-S (%) MINE-L (%)

Planning 12.02± 0.22 10.64± 0.22 11.02± 0.18

SARSA(Table) 5.52± 0.36 6.72± 0.41 5.66± 0.26
Q-learning(Table) 3.59± 0.18 6.01± 0.23 4.08± 0.15

SARSA(Fourier) 2.95± 0.19 3.37± 0.14 2.34± 0.75
Q-learning(Fourier) 2.75± 0.17 3.15± 0.15 3.13± 0.25

Our approach also adapts to meta-level control problems
with parameters that change over time. In Fig. 5, our tech-
niques update their policies in under 1000 random instances
to adapt to a change in the size of each TSP benchmark prob-
lem. The planning technique, however, requires substantial
offline work because it has to compile a completely new
policy by applying dynamic programming to a performance
profile before the activation of meta-level control.

Using reinforcement learning for model-free meta-level
control offers a number of advantages over the traditional
planning paradigm. First, when the parameters of meta-level
control change over time, our approach can update its policy
incrementally on the fly. This is critical since the settings of
the anytime algorithm, the distribution of problem instances,
and the CPU and memory conditions of the system often shift
in practice. Moreover, when there is not enough time before
the activation of meta-level control, our approach can com-
pile its policy online from scratch. Most importantly, even
if the parameters of meta-level control do not change over
time and there is enough time before the activation of meta-
level control, our approach still outperforms the planning
paradigm by learning a significantly more effective policy
in substantially less time. This is because reinforcement
learning focuses on meaningful regions of the state space
of the meta-level control problem in contrast to planning.

VII. CONCLUSION

We propose a model-free approach to meta-level control
based on reinforcement learning with a number of advantages
over the traditional planning paradigm. It not only outper-
forms existing techniques but also relaxes the assumptions
that reduce their effectiveness and usefulness in the real
world. Future work will explore sophisticated reinforcement
learning methods that use a neural network function approx-
imation with a feature-based state of computation.



REFERENCES

[1] S. Karayev, M. Fritz, and T. Darrell, “Anytime recognition of objects
and scenes,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 572–579.

[2] E. Burns, W. Ruml, and M. B. Do, “Heuristic search when time
matters,” Journal of Artificial Intelligence Research, vol. 47, pp. 697–
740, 2013.

[3] B. Cserna, W. Ruml, and J. Frank, “Planning time to think: Metar-
easoning for on-line planning with durative actions,” in Proceedings
of the 27th International Conference on Automated Planning and
Scheduling, 2017.

[4] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the RRT*,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2011,
pp. 1478–1483.

[5] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration:
An anytime algorithm for POMDPs,” in Proceedings of the 8th
International Joint Conference on Artificial Intelligence, 2003, pp.
1025–1032.

[6] M. T. Spaan and N. Vlassis, “Perseus: Randomized point-based value
iteration for POMDPs,” Journal of Artificial Intelligence Research,
vol. 24, pp. 195–220, 2005.

[7] F. T. Ramos and F. G. Cozman, “Anytime anyspace probabilistic
inference,” Journal of Approximate Reasoning, vol. 38, no. 1, 2005.

[8] E. J. Horvitz, “Reasoning about beliefs and actions under computa-
tional resource constraints,” in Proceedings of the 3rd Workshop on
Uncertainty in Artificial Intelligence, 1987.

[9] M. Boddy and T. L. Dean, “Deliberation scheduling for problem solv-
ing in time-constrained environments,” Artificial Intelligence, vol. 67,
no. 2, pp. 245–285, 1994.

[10] C. J. Paul, A. Acharya, B. Black, and J. K. Strosnider, “Reducing
problem-solving variance to improve predictability,” Communications
of the ACM, vol. 34, no. 8, pp. 80–93, 1991.

[11] E. J. Horvitz, “Computation and action under bounded resources,”
Ph.D. dissertation, Stanford University, CA, 1990.

[12] S. Zilberstein and S. J. Russell, “Approximate reasoning using anytime
algorithms,” in Imprecise and Approximate Computation, S. Natarajan,
Ed. Springer, 1995, pp. 43–62.

[13] E. A. Hansen and S. Zilberstein, “Monitoring and control of anytime
algorithms: A dynamic programming approach,” Artificial Intelligence,
vol. 126, no. 1-2, pp. 139–157, 2001.

[14] C. H. Lin, A. Kolobov, E. Kamar, and E. Horvitz, “Metareasoning for
planning under uncertainty,” in Proceedings of the 24th International
Joint Conference on Artificial Intelligence, 2015.

[15] E. Horvitz and G. Rutledge, “Time-dependent utility and action under
uncertainty,” in Proceedings of the 7th Conference on Uncertainty in
Artificial Intelligence, 1991, pp. 151–158.

[16] E. Horvitz, “Reasoning under varying and uncertain resource con-
straints.” in Proceedings of the 7th AAAI Conference on Artificial
Intelligence, 1988, pp. 111–116.

[17] S. Russell and E. Wefald, “Principles of metareasoning,” Artificial
Intelligence, vol. 49, pp. 361–395, 1991.

[18] S. Zilberstein, “Using anytime algorithms in intelligent systems,” AI
Magazine, vol. 17, no. 3, p. 73, 1996.

[25] G. Konidaris, S. Osentoski, and P. S. Thomas, “Value function
approximation in reinforcement learning using the Fourier basis.” in
Proceedings of the 25th AAAI Conference on Artificial Intelligence,
vol. 6, 2011, p. 7.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 1998.

[20] G. Tesauro, “Temporal difference learning and TD-gammon,” Com-
munications of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[21] H. Kim, M. I. Jordan, S. Sastry, and A. Y. Ng, “Autonomous helicopter
flight via reinforcement learning,” in Proceedings of the Conference
on Neural Information Processing Systems, 2004, pp. 799–806.

[22] E. A. Hansen, “Indefinite-horizon POMDPs with action-based termi-
nation,” in Proceedings of the 22nd AAAI Conference on Artificial
Intelligence, 2007, pp. 1237–1242.

[23] E. A. Hansen and R. Zhou, “Anytime heuristic search,” Journal of
Artificial Intelligence Research, vol. 28, pp. 267–297, 2007.

[24] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Algorithm
runtime prediction: Methods & evaluation,” Artificial Intelligence, vol.
206, pp. 79–111, 2014.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[27] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1995.

[28] S.-L. Chen and Y.-M. Wei, “Least-squares SARSA(Lambda) algo-
rithms for reinforcement learning,” in Proceedings of the 4th Inter-
national Conference on Natural Computation, 2008, pp. 632–636.

[29] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 1992.

[30] A. Srivihok and P. Sukonmanee, “E-commerce intelligent agent:
Personalization travel support agent using Q-learning,” in Proceedings
of the 7th International Conference on Electronic Commerce, 2005,
pp. 287–292.

[31] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management using RL,”
in Proceedings of the International Conference on Computer-Aided
Design, 2009, pp. 461–467.

[32] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton, “Toward
off-policy learning control with function approximation,” in Proceed-
ings of the 27th International Conference on Machine Learning, 2010.

[33] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, no. 2, pp.
498–516, 1973.

[34] C. Bierwirth, “A generalized permutation approach to job shop
scheduling with genetic algorithms,” Operations Research Spectrum,
vol. 17, no. 2-3, pp. 87–92, 1995.

[35] A. Misevičius, “A modified simulated annealing algorithm for the
quadratic assignment problem,” Informatica, vol. 14, no. 4, pp. 497–
514, 2003.

[36] P. C. Gilmore, “Optimal/suboptimal algorithms for the quadratic
assignment problem,” Journal of the Society for Industrial and Applied
Mathematics, vol. 10, no. 2, pp. 305–313, 1962.

[37] K. H. Wray, D. Ruiken, R. A. Grupen, and S. Zilberstein, “Log-
space harmonic function path planning,” in Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, 2016, pp.
1511–1516.

[38] S. Thrun, D. Hahnel, D. Ferguson, M. Montemerlo, R. Triebel,
W. Burgard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker,
“A system for volumetric robotic mapping of abandoned mines,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2003, pp. 4270–4275.


